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Abstract

The effects of small vibrations on a particle oscillating near a solid wall in a fluid cell, relevant to material processing
such as crystal growth in space, have been investigated experimentally and theoretically. Assuming the boundary layer
around the particle to be thin compared to the particle radius at high vibration frequencies, an inviscid fluid model was
developed to predict the motion of a spherical particle placed near a wall of a rectangular liquid-filled cell subjected to
a sinusoidal vibration. Under these conditions, a non-uniform pressure distribution around the particle results in an aver-
age pressure that gives rise to an attraction force. Theoretical expressions for the attraction force are derived for the par-
ticle vibrating normal to and parallel with the nearest cell wall. The magnitude of this attractive force has been verified
experimentally by measuring the motion of a steel particle suspended in the fluid cell by a thin wire. Experiments
performed at high frequencies showed that the mean particle position, when the particle is brought near a cell wall, shifts
towards the same wall, and is dependent on the cell amplitude and frequency, particle and fluid densities.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Advanced materials such as semi-conductor and protein crystals can be produced under microgravity where
the effect of density variation within a fluid system becomes unimportant and buoyancy-induced motion and
sedimentation are suppressed. However, many semi-conductor and protein crystal growth experiments con-
ducted in the past aboard the Space Shuttle and Mir Space Station have yielded unexpected results possibly
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due to small vibrations existing on the space platforms called g-jitter. These vibrations could alter the fluid
behavior under microgravity which may lead to different crystal properties. Space platforms could provide
an ideal environment to conduct diffusion-controlled experiments if g-jitter can be reduced.

The overall objective of this paper is to better understand the effects of small vibrations on particle–fluid
systems relevant to material processing under microgravity and on Earth. More specifically, the motion of
a solid particle in a sinusoidally-vibrated semi-infinite fluid cell has been investigated both theoretically and
experimentally. The fluid cell is filled with an inviscid liquid, and the particle is induced to oscillate near
one of the cell walls by cell vibration. The particle oscillation amplitude is theoretically predicted and com-
pared with experimental data obtained over a wide range of vibration conditions. In the present paper, a sys-
tematic series of experimental and theoretical investigations will be described to show the existence of a
vibration-induced attraction force when the particle oscillates near a cell wall in both perpendicular and
parallel directions with respect to the nearest wall.

A number of studies have been reported on flow-induced vibrations of solid particles. Some works include
particles undergoing a sinusoidal motion in an otherwise quiescent fluid. Other works include the interaction
force between two pulsating spheres in a fluid cell or the behavior of the particle near a wall when it is released
in a fluid cell under a gravitational acceleration field. However, the reverse situation of vibration-induced par-
ticle and fluid motion, in which the particle immersed in a fluid and vibrated near a cell wall in a semi-infinite
cell, has not yet been fully explored and tackled by any physical experiment. Some results of the previous
theoretical and experimental studies relevant to this work are briefly reviewed first, followed by descriptions
of the experimental and theoretical investigations performed in this work.

Stokes (1851) derived, by eliminating the inertia terms in all his calculations, the expressions for the forces
acting on a particle by the surrounding fluid subjected to harmonic motion. Basset (1888) and Boussinesq
(1885) expanded the expressions for the forces acting on a sphere in an arbitrary accelerating motion where
they also neglected the non-linear terms in order to simplify the Navier–Stokes equations. Leahy (1884) inves-
tigated theoretically the mutual action of two small spheres in an elastic medium. He found that the repulsive
or attraction force varies inversely with the square of the distance between them if the third or higher-order
terms are neglected. However, when he included the terms of the third order in the expression for the particle
displacement, he found that the force is inversely proportional to the cube of the distance between the two
spheres. Hicks (1880) determined the coefficients of the velocities in the expression for the kinetic energy in
the form of an infinite series, when two spheres are moving in an infinite liquid with a uniform speed along
the line joining their centers of mass. His method was not very effective and only approximate solutions were
attained. Basset (1887) gave an approximate solution using the transformation of spherical harmonics.

Other important studies had been performed to determine the terminal velocities of a spherical particle in a
vertically oscillating liquid. Among these studies were the ones published by Jameson and Davidson (1966),
Baird et al. (1967) and Ikeda and Yamasaka (1989). Molinier et al. (1971) dealt with the study of the motion
of a sphere in a column where there is a circulation of a viscous oil. Eames et al. (1996) studied the displace-
ment of an inviscid fluid by a sphere moving away from a wall at a constant speed; in their paper, the fluid
displacement by a solid body moving away from a wall was calculated, using the flow around a sphere.
Milne-Thomson (1968) derived an analytical expression for the hydrodynamic force acting on a particle in
a quiescent, inviscid fluid at a distance H from an infinite wall. Using the method of Lagrange, he derived
an expression for the horizontal force acting on the particle in the x-direction normal to the nearest wall.
He concluded that if a spherical particle is moving in the x-direction directly towards the wall, a force towards
the wall is required to maintain a constant speed. Hence, a force opposite in direction is apparently induced to
repel the sphere from the wall. Unfortunately, he did not include a mathematical analysis of the particle–fluid
system subjected to an external excitation.

The important reference that summarizes to a certain extent some works on particle–fluid interaction was
published by Clift et al. (1978) in which all the main studies up to 1978 for the motion of drops, bubbles and
particles are covered. It covers flows at low and high Reynolds numbers, the drag force induced and the wall
effects on the particle motion. Unfortunately, there is no mathematical expression for the vibration effect on
the motion of a particle vibrating near a wall in a fluid cell. Chelomey (1983) performed some experiments on a
solid particle immersed in a liquid-filled container subjected to vibrations and concluded that under certain
conditions, non-uniform forces arise with zero-mean values acting on the particle. In his work, Chelomey
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(1983) claimed that there were induced forces during vibration which could result in a paradoxical behavior of
bodies in an oscillating liquid; bodies of greater density than the surrounding fluid would emerge at the top,
whereas light bodies would move downward against the force of gravity.

Houghton (1961) analyzed the non-linear drag (Newton’s law) force on free particles in a sinusoidal veloc-
ity field leading to the Mathieu equation, where he found that stable particle trajectories may occur in cer-
tain ranges of amplitude and frequency. Houghton did not include any finite cell effect in his study, and he
did not derive any analytical equation showing the near-wall effect on the particle’s sinusoidal motion. Li
et al. (1993) used a successive images method to determine the velocity potential and hence the interacting
force on two spheres moving with steady velocities normal to the line joining their centers of mass. The
motion of high Reynolds number bubbles in inhomogeneous flow has been predicted by Magnaudet and
Eames (2000) but their analysis did not include any wall effect. Magnaudet (2003) recently studied the
motion of a particle near a wall at a finite Reynolds number, but this study did not incorporate any effect
of vibration near a cell wall.

A recent study on vibration-induced particle motion in an infinite fluid cell, has been presented by Hassan
et al. (2006a). In their study, a theoretical model of a spherical particle vibrating in a large fluid cell was
derived assuming an inviscid fluid and irrotational flow. They also measured the amplitude of a spherical par-
ticle suspended in a rectangular water-filled cell by a thin wire and subjected to sinusoidal vibrations. The infi-
nite cell model was shown to predict the measured particle amplitudes well. A semi-infinite cell model for a
particle vibrating normal to a cell wall was also developed by Hassan et al. (2006b) where the effect of the cell
width was studied experimentally and theoretically. In deriving an expression for the particle amplitude, how-
ever, they did not consider the effect of an attraction force that can develop when the particle is vibrating very
close to a solid wall.

The present paper is related to the applications of the acoustic streaming phenomena reviewed recently by
Riley (2001). Examples of these applications include the use of unidirectional streaming flow to measure the
adsorption coefficients of common liquids, and reduction of the heating effect produced by the impact of an
ultrasonic beam on a bone tissue. Riley (2001) expanded the vorticity equation at the leading order of e = U0/
xR0 where e is the expansion parameter, U0 is the velocity amplitude associated with fluctuations, x is the
angular frequency of vibration, and R0 is the particle radius. He found that the vorticity has a non-zero time
average value, indicating that steady streaming is induced in the fluid at the leading order of expansion. He
stated that for a spherical particle oscillating in a low viscosity fluid at rest with the kinematic viscosity,
m� xR2

0, the flow is composed of two separate patterns. The first is an oscillatory flow at the leading order
of expansion in the bulk of the fluid and is irrotational. The second flow is a steady mean flow reaching
the edge of the boundary layer (Stokes layer) and streaming in the bulk of the fluid. The first and second flow
patterns are related, respectively, to the oscillatory particle motion and the particle drift investigated in the
present work.

From the above studies, it is evident that the existence of an attraction force has not been investigated in
detail when the particle is vibrating in a sinusoidal motion near a fluid cell wall. Thus, the objective of this
paper is to investigate theoretically and experimentally the magnitude and dependence of the attraction force
on various parameters relevant to the vibration-induced motion of a solid particle in a fluid cell.

2. Experimental apparatus

The experimental apparatus consisted of a test section, a linear translation stage, and a video camera/
recording system as shown in Fig. 1. Each of the major components is described below in detail. The test sec-
tion was mounted on a linear stage which was installed on a vibration-isolating optical table to be totally iso-
lated from external vibrations, and this was checked by a calibrated accelerometer.

A PC-controlled mechanical translation stage was used to vibrate the fluid cell with sub-micron resolution
and repeatability at frequencies below 7 Hz. It was controlled to move the fluid cell horizontally with a spec-
ified amplitude and frequency in a near sinusoidal manner. For higher frequency vibrations (>7 Hz), an air
bearing stage driven by an electromagnetic actuator (Labworks Inc., Model ET-132-2) was used that mini-
mized small vibrations in the other two directions. The cell motion was also measured using a laser displace-
ment sensor (Keyence Model ILD 1401-5) with a 1 lm resolution.
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The test section was a water-filled rectangular vessel made of smooth and transparent acrylic plates. The
internal dimensions of the fluid cell were 50.0 mm (W) · 50.0 mm (L) and 110 mm (H). In order to vary
the width of the cell and to study the wall proximity effects on the particle motion, six grooves were cut on
two opposite side walls to enable insertion of up to three 6.0-mm thick acrylic plates. A spherical steel particle
(density = 7.83 g/cm3, diameter = 12.7 mm) was suspended in the fluid cell with a thin platinum wire of
125 lm diameter and 76 mm length. The effects of the wire diameter and length on the particle motion had
been studied previously by Hassan et al. (2006a), and the wire diameters less than 150 lm had been determined
to exert no influence on the vibration-induced particle motion amplitude. The fluid cell was completely filled
with distilled and degassed water, which has relatively low viscosity (l = 10�3 kg/m s at 20 �C and 1 atm) and
may be considered as inviscid from a theoretical point of view.

A CCD video camera (Hitachi D.S.P. VK C-370 or a Megaplus high speed camera) with an interchangeable
lens was used to capture the particle motion with sufficient magnification. The edge of the particle was cap-
tured at 30 frames per second with the Hitachi CCD camera and at 125 frames per second with the Megaplus
camera for cell vibration frequencies below 7 Hz and above 7 Hz, respectively. The shutter speed was set at
1/1000 s�1 to obtain sharp images. The particle edges recorded in a digital video tape were analyzed using
an image analysis program. In total, 255 frames of particle edges captured over 8.64 s or 2.0 s were analyzed
frame by frame for each run, and the data were entered into a spreadsheet to calculate the particle oscillation
amplitude and frequency.

In order to investigate the wall proximity effects, four small holes were drilled through the top cover plate
and the end of the platinum wire was fixed to one of the holes at different positions from the nearest wall. By
inserting one or more 6.0 mm-thick plates into the grooves, the distance between the center of the particle and
the nearest wall, H, could be varied from 8.0 mm to 17.0 mm. The vibration amplitude, a, was set at 1.0 mm,
and the vibration frequency was increased from 2 Hz to 20 Hz over small increments.

The above procedure was repeated for different values of H to detect any wall-proximity effect. Before the
data were collected, the system was run for at least 5 min to allow the particle and fluid motions to become
stable under the operating conditions. The video camera was then used to capture the image of the edge of the
oscillating particle. A back light was placed far from the fluid cell to avoid any heating effect. The particle
image data were recorded on a mini-DV video-cassette by means of a digital VCR (JVC Model AG-7355)
for the 30 fps camera, or saved directly in the PC hard drive for the 125 fps camera.

The images of the particle edge were analyzed using an edge detection program designed to calculate the
edge coordinates in each frame. A pixel to mm conversion factor was obtained by lowering a platinum wire
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of known diameter to the bottom of the fluid cell and recording its image. Then by using the same image anal-
ysis program, the wire diameter in pixels was calculated and a conversion factor was computed.

The fluid cell was mounted on a platform fixed to the translation stage while the video camera was either
fixed on the same platform or mounted on an optical table. In the former configuration, the video camera
recorded the particle motion in the cell’s frame of reference, while in the latter, the camera captured the par-
ticle motion in the fixed frame of reference. When the particle motion was parallel to the nearest wall, the
video camera was oriented parallel with the plane of the particle oscillation as shown in Fig. 2 to detect
the mean attraction force, which would cause the plane of the particle oscillation to drift towards the nearest
wall.
3. Theoretical analysis of particle oscillation normal to a container wall

To analytically investigate the wall-proximity effect on the particle motion and the existence of the attrac-
tion force, an inviscid fluid model is developed below for a particle vibrating in a plane normal to a cell wall.
This model predicts a non-uniform pressure distribution around the particle, which can be integrated around
the particle surface to yield an expression for a mean attraction force. This force will be shown to be dependent
on the cell vibration frequency and amplitude, the liquid and particle densities and a ratio of the distance
between the center of the particle and the cell wall to the particle radius, H/R0. To verify the attraction force
expression derived, experimental data will be compared with the shift in the mean particle position predicted
by a force balance on the particle oscillating in an inviscid fluid.

The use of an inviscid fluid assumption can be justified by examining the ratio of the combined inertial
forces of the particle and fluid to the viscous force, which is proportional to ðqLþqSÞ

qL

R0

dS
, where qL is the fluid

density, qS is the particle density and dS is the thickness of the viscous Stokes layer. In the present work,
dS of about 0.18 mm for water at a cell vibration frequency of 10 Hz and R0 of 6.35 mm, so the ratio of inertial
to viscous forces is large and a potential flow can be assumed to exist outside the viscous Stokes layer. From
another perspective, the Reynolds number in the present work can be given by

ApxD0

m where Ap is the particle
amplitude, x is the angular frequency of particle vibration, and D0 is the particle diameter. For a cell vibration
frequency of 10 Hz and for a steel particle of radius 6.35 mm used in this work, the particle amplitude in water
is measured to be 830 lm and the Reynolds number is about 660, which is high enough to justify the inviscid
fluid assumption.

Thus, in the following derivation for a particle–fluid system subjected to a sinusoidal acceleration under
zero-gravity, the viscous terms are assumed to be negligible compared to inertia terms. Furthermore, based
on the equation for the rate of particle rotation near a wall given by Happel and Brenner (1983), the
particle rotation rate was estimated to be very small even for the maximum particle velocity measured
and minimum particle–wall distance used in the experiment. Thus, the effect of particle rotation was also
neglected.
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It is convenient to write down the momentum and continuity equations in the particle’s frame of reference
as follows:
o~v

ot
þ ð~v:rÞ~v ¼ �rp

qL

� d~u

dt
ð1Þ

div ~v ¼ 0 ð2Þ
where~u is the particle velocity vector in the laboratory frame of reference,~v is the fluid velocity vector relative
to the particle, p is pressure, qL is liquid density and t is time. The pulsational motion of the fluid is considered
as a potential flow,
~v ¼ ru ð3Þ

where u is a harmonic function that satisfies the Laplace equation,
Du ¼ 0 ð4Þ

The impermeability boundary conditions at the particle surface and the container walls are respectively given
by
ou
on

����
s

¼ 0 ð5Þ

ou
on

����
W

¼ wn � un ð6Þ
where n indicates the outward direction normal to the particle surface, and wn and un are the components of
the wall and particle velocities in the normal direction.

It is necessary to consider at this stage small amplitude vibrations. By omitting the non-linear terms in Eq.
(1), the pulsational pressure ~p can be obtained by integrating the same equation as
~p ¼ �qL

ou
ot
þ~u �~r

� �
ð7Þ
where~r is the fluid element’s position with respect to the particle. The equation for the pulsational motion of
the particle is given by
m
o~u

ot
¼ �

I
~p dS
�! ð8Þ
where m is the particle mass, and dS
�!

is a vector element of area dS oriented outward from the center of the
sphere.

Substituting Eq. (7) into Eq. (8), we obtain
m
o~u

ot
¼ qL

I
ou
ot

dS
�!þ qLV

d~u

dt
ð9Þ
where V is the volume of the sphere. If we introduce the particle density, Eq. (9) can be written as
ðqS � qLÞV
d~u

dt
¼ qL

I
ou
ot

dS
�! ð10Þ
We restrict this analysis to the case where both the container and particle move along the unit vector~i.
Thus,
~u ¼ u~i ð11Þ

and
~w ¼ w~i ð12Þ

It is convenient to separate the time domain from the spatial coordinates using the separation of variables
method. Hence, let
u ¼ ðw� uÞð~i �~rþ UÞ ð13Þ



S. Hassan et al. / International Journal of Multiphase Flow 32 (2006) 1037–1054 1043
where the dimensionless function U is independent of time and has to satisfy the conditions from Eqs. (4)–(6),
respectively as follows:
DU ¼ 0 ð14Þ
oU
on

����
s

¼ �in ð15Þ

oU
on

����
W

¼ 0 ð16Þ
where in is the component of the vector~i in the normal direction. Hence, the problem now does not contain
time.

Substituting Eqs. (11)–(13) into Eq. (10), we obtain
ðqS � qLÞV
d~u

dt
¼ qL

I
ow
ot
� ou

ot

� �
ð~i �~rþ UÞ dS

�! ð17Þ
Solving (17) for the scalar velocity u yields,
u ¼ qLw
V þ~i

H
U dS
�!

qSV þ qL
~i
H

U dS
�!

 !
ð18Þ
Eq. (18) can be represented as
u ¼ Gw ð19Þ

in which G is expressed by
G ¼ 1þ a
qS

qL
þ a

ð20Þ
where
a ¼
~i
H

U dS
�!

V
ð21Þ
If we time-average the momentum Eq. (1) over one vibration period, accounting for the pulsational velocity
field, Eqs. (3) and (4), and the sinusoidal motion of the particle, the average pressure, �p, can be obtained as
p ¼ � qL

2
ruð Þ2 ð22Þ
using the fact that the average of a sinusoidal motion over one period is zero. Substituting Eq. (13) into (22)
gives the average pressure as
p ¼ � 1

2
qLw2ð1� GÞ2ð~i þrUÞ2 ð23Þ
where w2 is the average of the instantaneous velocity squared over one oscillation period.
Finally, the average force acting on the particle can be calculated by integrating the average pressure from

Eq. (23) around the particle. Hence,
~F ¼ �
I

�p dS
�! ð24Þ

~F ¼ � 1

2
qLw2

ðqS � qLÞ
2

ðqS þ aqLÞ
2

N~i ð25Þ
where N is expressed by
N ¼~i
I
ð~i þrUÞ2 dS

�! ð26Þ
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The above analysis is simplified if the particle has a spherical shape with a radius R0. Expression (21) would
then be given by
a ¼ 3

2R0

I
Uxdx ð27Þ
where x = cosh is the polar angle calculated from the direction of the unit vector,~i. To solve Eqs. (26) and
(27), the function U has to be expressed in a certain form to satisfy the Laplace equation. Using a spherical
harmonics approach, U can be written as
U ¼ A01
x
r2
þ A02

3x2 � 1

r3
� A01

y
r2

1

þ A02
3y2 � 1

r3
1

ð28Þ
where r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H 2 þ 4Hrx þ r2

p
and y ¼ ð2HþrxÞ

r1
. Here, r, and r1 are the distances from the particle and its image

to any point in the fluid in the cell, H is the distance between the center of mass of the particle and the nearest
wall, as shown in Fig. 3.

A solution of Eq. (28) satisfies the Laplace equation and the boundary conditions at the rigid container
wall, but it is impossible to satisfy exactly the boundary conditions on the particle surface. Thus, as long as
the particle does not collide with the wall, a relatively large distance between the particle and the wall, H, com-
pared to the particle radius, R0, will be considered in the following analysis. It will be seen that by properly
selecting the constants A01 and A02, Eq. (28) can satisfy the boundary conditions with accuracy not worse than
the fourth order with respect to (R0/H).

By using the particle radius as the length scale, Eq. (28) can be non-dimensionalized as
U ¼ A1

x
r2
þ A2

3x2 � 1

r3
� A1g

2 y
r2

2

þ A2g
3 3y2 � 1

r3
2

ð29Þ
where g ¼ R0

2H, r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2grxþ g2r2

p
, and y ¼ ð1þgrxÞ

r2
.

Expanding Eq. (29) with respect to g, the coefficients A1, A2, are given by
A1 ¼
1

2
þ 1

2
g3; A2 ¼ �

1

2
g4 ð30Þ
while for Eq. (28), the coefficients are
A01 ¼ R3
0

1

2
þ 1

2
g3

� �
; A02 ¼ �R4

0

1

2
g4

� �
ð31Þ
The inaccuracy in satisfying the boundary condition is reduced to the order g6. As one can see, the last term in
Eq. (29) is small and can be omitted.
R
0

H H 

r r1

i 

θ

Fig. 3. Particle and its image near a wall.
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By substituting U given by Eq. (29) into Eqs. (27) and (26), and using the software Maple and Mathematica,
one can obtain the following:
a ¼ 1

2
þOðg3Þ ð32Þ

N ¼ �6R2
0g

4 þOðg7Þ ð33Þ
For monochromatic vibrations of a cell with an amplitude, a, and frequency x = (2pf), the average of the
instantaneous velocity squared over one vibration period is
w2 ¼ 1

2
a2x2 ð34Þ
By substituting Eqs. (33) and (34) into Eq. (25), the average attraction force acting on the particle is given by
F attraction ¼
3

4
pa2x2qL

qS � qL

2qS þ qL

� �2 R6
0

H 4
ð35Þ
For a particle of radius R0 oscillating parallel to a wall, similar calculations yield a slightly different equa-
tion for the attraction force as given by
F attraction ¼
3

8
pa2x2qL

qS � qL

2qS þ qL

� �2 R6
0

H 4
ð36Þ
By introducing the dimensionless parameters for the attraction force, fluid density, particle–wall distance,
and cell amplitude as follows:
~q ¼ qS

qL

; eH ¼ H
R 0
; ~a ¼ a

R0
; eF attraction ¼

F attraction

qLax2V
the above Eqs. (35) and (36) can be written respectively in dimensionless form as
eF attraction ¼
9

16
~a

~q� 1

2~qþ 1

� �2
1eH 4

� �
ð37Þ

eF attraction ¼
9

32
~a

~q� 1

2~qþ 1

� �2
1eH 4

� �
ð38Þ
The variations of the attraction force in Eqs. (37) and (38) are shown in Fig. 4. It is seen clearly that in both
cases the dimensionless attraction force decreases with the particle–wall distance to particle radius ratio, eH .

As mentioned in the experimental section, it was much easier to measure the shift in the mean position of
the particle towards the nearest wall when the particle was oscillating in parallel with rather than normal to the
nearest cell wall. Hence, in order to verify Eq. (36), a shift in the plane of the particle oscillation was measured
before, during and after the cell was vibrated in the present experiments. The measured shift in the plane of
oscillation will be compared to the value predicted from a force balance performed on the particle as shown in
Fig. 5. For a particle suspended by a wire, the relation between the attraction force and the shift in the plane of
oscillation from the vertical, XD, would be given by
F attraction ¼ ðqS � qLÞgV
X D

L
ð39Þ
where X D

L is the sine of the angle of the wire from the vertical, L is the distance from the suspension point to the
center of mass of the particle, and V is the volume of the particle. Hence, the particle drift, XD, is given by
X D ¼
3

4pR3
0

F attraction

L
gðqS � qLÞ

ð40Þ
Substituting Eq. (36) into (40) yields
X D ¼
9

32

L
g

a2x2qL

qS � qL

ð2qS þ qLÞ
2

R3
0

H 4
ð41Þ



0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

D
im

en
si

on
le

ss
 a

ttr
ac

tio
n 

fo
rc

e
 E

qs
. (

37
) 

an
d 

(3
8)

H / R0

Fig. 4. Variation of the dimensionless attraction force given by Eqs. (37) and (38) – with the particle–wall distance to particle radius ratio,
H/R0, for steel particle in water (cell amplitude = 1.0 mm, particle radius = 6.35 mm).

XD

L 

Fig. 5. Shift in the mean position of a particle oscillating parallel to the nearest cell wall and normal to the plane shown.

1046 S. Hassan et al. / International Journal of Multiphase Flow 32 (2006) 1037–1054
The predicted drift in the oscillation plane from the vertical will be compared with the experimentally mea-
sured values in a later section.

4. Alternate analysis of particle drift near a cell wall

In an alternate analysis, the motion of a spherical particle of diameter R0 attached to a wire with the point
of suspension fixed at a distance H from the nearest wall has been investigated. We assume that the other walls
of the fluid cell are sufficiently far from the oscillating particle that their influence can be neglected. We also
neglect the influence of the viscosity on the particle motion, which is valid if the Stokes number,
S ¼ 1

R0

ffiffiffiffi
m
x

r
� 1 ð42Þ
where m and x are the fluid kinematic viscosity and the cell vibration frequency, respectively.
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For the description of the particle dynamics in an inviscid fluid, one can use a Lagrange approach described
by the following equation:
d

dt
oL
o _qi

� �
� oL

oqi

� �
¼ 0 ð43Þ
Here qi is the generalized coordinate required to describe the particle motion, and L is the Lagrange function
given by
L ¼ T � U ð44Þ

where T is the particle kinetic energy and U is its potential energy.

Using Eq. (43) to derive the particle motion, the kinetic energy and the potential energy of the particle have
to be calculated. The kinetic energy, T, of the particle in Cartesian coordinates is given by
T ¼ 1

2
Að _x2 þ _z2Þ þ 1

2
B _y2 ð45Þ
where z is the vertical coordinate, y is the distance from the particle center of mass to the vertical wall, and x is
the horizontal coordinate parallel to the wall (see Fig. 6). The dot above the coordinates x, y and z denotes
their derivatives with respect to time, t. The coefficients A and B contain the fluid phase kinetic energy asso-
ciated with the disturbance flow and are functions of y. If the distance between the particle’s center of mass
and the nearest wall is substantially smaller than the particle radius, R0, then the coefficients A and B can be
represented in the form of fast converging series in R0

y . The first two terms of this expansion are given in Lamb
(1945) and have the following form:
A ¼ AðyÞ ¼ m 1þ 1

2
e 1þ 3

16

R3
0

y3

� �� �
ð46Þ

B ¼ BðyÞ ¼ m 1þ 1

2
e 1þ 3

8

R3
0

y3

� �� �
ð47Þ
where e ¼ qL

qS
is the density ratio between the fluid and particle, and m is the mass of the particle.

The potential energy of the particle is a sum of two terms related to the gravity field and inertia force field,
respectively:
U ¼ �mð1� eÞgL cos an þ mð1� eÞax2L sin an sin xt ð48Þ

where an is the inclination angle between the wire attached to the particle and the equilibrium vertical position,
and a is the cell amplitude, as shown in Fig. 6.

The particle in a fluid cell shown in Fig. 6 is subjected to harmonic oscillations normal to the nearest cell
wall I. In this paper, a full detail of the derivation will be shown only for the normal vibration case; similar
Cell wall I
z

y

n

Fluid Cell L

α

H

Fig. 6. Particle coordinates near a wall .
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calculations are available for the cell motion parallel to the nearest cell wall but only the final expressions
derived will be given in this section.

For cell vibrations normal to the nearest cell wall, x = 0, and y and z are expressed in terms of the angle of
pendulum inclination from the vertical position as
y ¼ H � L sin an; z ¼ L cos an ð49Þ

Writing down the Lagrange function (43) through a and _a as
d

dt
oL
o _an

� �
� oL

oan

� �
¼ 0 ð50Þ
and substituting Eqs. (46)–(49) into (50) yield,
_M ¼ L2ðA� BÞ sin an cos an _a2
n �

1

2
L3ðA0 sin2 an þ B0 cos2 anÞ cos an _a2

n � mð1� eÞgL sin an

� mð1� eÞax2L cos an sin xt ð51Þ
where
M ¼ L2ðA sin2 an þ B cos2 anÞ _an ð52Þ

is the angular momentum, and A 0 and B 0 are the derivatives of A and B with respect to y.

The above system of equations is non-linear and cannot be solved analytically. However, it can be easily
solved numerically for specific values of the parameters involved. As an illustration we plot in Fig. 7 the par-
ticle position in horizontal direction predicted as a function of time for the parameter values which correspond
to the present experiments (a steel particle in water, Dp = 12.7 mm, L = 76 mm, f = 10 Hz, and cell ampli-
tude = 0.88 mm). To eliminate the influence of initial conditions, the calculations were performed by introduc-
ing weak dissipation into the system.

Since the cell vibration amplitudes and consequently the amplitudes of particle oscillations are small we can
simplify the equation of particle motion by retaining the non-linear terms of the order not higher than the
second order with respect to a. As a result, the following equations can be obtained:
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Fig. 7. Numerical solution of Eq. (53) for the particle motion near a wall.
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_M ¼ � 1

2
L3B0 _a2

n � mð1� eÞgLan � mð1� eÞax2L 1� 1

2
a2

n

� �
sin xt ð53Þ

M ¼ L2B _an � L3B0an _an ð54Þ
where B and B 0 are calculated at y = H.
We can apply an averaging method to this equation. For that we represent an in the form an ¼ �an þ ~anðtÞ,

where �an and ~an are the average and pulsational components of an. Retaining only the leading terms in Eqs.
(53) and (54), and then solving the above two equations for ~a, one can obtain the following:
~an ¼ Cn sin xt ð55Þ

where the constant Cn is given by
Cn ¼
mð1� eÞax2

LBx2 � mð1� eÞg ð56Þ
The constant Cn is dependent on the physical characteristics of the fluid and particle, the particle diameter,
and the distance between the particle center of mass and the nearest wall, H.

By substituting Eq. (55) into Eq. (53) and averaging over a vibration period, the following formula for �an

can be obtained:
�an ¼
1

2mð1� eÞ

� �
C2

nL2x2B0

ax2C � 2g

� �
ð57Þ
The above Eqs. (55) and (57) are not limited to large particle-to-nearest wall distances. If the derivative of B

from Eq. (47) at y = H is substituted, the average drift for the case of the particle oscillating normal to the
nearest cell wall is given by
�an ¼
9

32H 4ð1� eÞ

� �
R3

0C2
nL2x2e

2g � ax2Cn

� �
ð58Þ
Similar calculations for the case of a particle oscillating parallel to the nearest wall lead to the formulas for
the average and pulsational components, ~ap and �ap, given by Eqs. (55)–(58) with B and B 0 replaced by A and
A 0, respectively. The expressions for these components are then given by
~ap ¼ Cp sin xt ð59Þ

�ap ¼
9

64H 4ð1� eÞ

� �
R3

0C2
pL2x2e

2g � ax2Cp

 !
ð60Þ
where the constant Cp is
Cp ¼
mð1� eÞax2

LAx2 � mð1� eÞg ð61Þ
Finally, converting the angle to a distance, Eqs. (58) and (60) give respectively
X n ¼
9

32H 4ð1� eÞ

� �
R3

0C2
nL3x2e

2g � ax2Cn

� �
ð62Þ

X p ¼
9

64H 4ð1� eÞ

� �
R3

0C2
pL3x2e

2g � ax2Cp

 !
ð63Þ
One can readily show that at high frequencies, Eq. (63) reduces to Eq. (41).
Fig. 8 shows the difference between the mean values of the particle drift predicted for normal and parallel

particle oscillations with respect to the nearest wall. As evident from a comparison of Eqs. (62) and (63) shown
in Fig. 8, the mean particle drift in the case of the particle oscillating normal to the nearest wall is twice the
mean drift of the particle oscillating parallel to the same wall.
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5. Results and discussion

In the experiments involving a particle oscillating normal to the nearest wall, the particle motion was
recorded by a 125 fps video camera and the position of the particle was determined as a function of time
by analyzing consecutive frames of video images. Fig. 9 shows the particle trajectory and the relative cell wall
location when the 12.7 mm diameter steel particle was oscillating at the center of the cell (H = 25.0 mm) at a
cell vibration frequency of 10 Hz and amplitude of 1.0 mm. The mean position of the particle was unchanged
before, during, and after the vibration of the cell.
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placed in the center of the cell).



Table 1
Mean particle drift predicted by Eq. (41) for different cell vibration conditions: constant cell acceleration of 0.4 g using an air-bearing
translation stage, H = 6.7 mm

Frequency (Hz) 7 8 9 10 12 15 17 20
Cell amplitude (mm) 2.03 1.55 1.23 0.99 0.69 0.44 0.34 0.25
Mean drift (lm) 54 41 33 26 19 12 9 7

Table 2
Mean particle drift predicted by Eq. (41) for different cell vibration conditions: constant cell amplitude of 1.0 mm using a mechanical
translation stage, H = 6.7 mm

Frequency (Hz) 7 8 9 10 12 15 17 20
Cell acceleration (·10�3 g) 197 258 326 402 580 906 116 1610
Mean drift (lm) 13 17 22 27 39 61 78 108

S. Hassan et al. / International Journal of Multiphase Flow 32 (2006) 1037–1054 1051
In order to verify the attraction force and quantitatively evaluate the wall-proximity effect predicted by the
present inviscid models, the predictions of the mean particle drift in a semi-infinite cell given by Eq. (41) or (63)
are compared with the experimental data obtained for the steel particle oscillating parallel to the nearest cell
wall in a water-filled fluid cell. The particle drift was clearly observed when the particle oscillation was
recorded using a video camera situated in the plane of the particle oscillation as shown in Fig. 2. As soon
as the cell began vibrating at a sufficiently high frequency, the plane of the particle oscillation drifted towards
the nearest wall due to the attraction force and reached a new equilibrium position which remained stationary
during the cell vibration. After the cell vibration was stopped, the plane of the particle oscillation returned to
its initial vertical position. Experimentally, the drift could be detected only above a cell vibration frequency of
9 Hz, and increased with the cell vibration frequency.

The theoretical predictions of the mean particle drift given by Eq. (41) are shown for different cell vibration
frequencies in Tables 1 and 2, for a constant cell acceleration level of 0.4 g and a constant cell amplitude of
1.0 mm, respectively.
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Figs. 10–13 show comparisons of the theoretical and experimental variations in the particle drift with the
cell vibration frequency for different distances between the particle and the nearest wall (H = 7.0–17.0 mm).
For H = 7.0 mm, the particle drift due to an attraction force increased from 25 lm at 10 Hz to 55 lm at
15 Hz (Fig. 10). No particle drift was measurable when it was less than 5 lm, and thus no data are shown
in Figs. 11–13 for those measurements. At higher frequencies, this drift could be accurately measured and
was in close agreement with the theoretical predictions of the inviscid model Eq. (41).

Figs. 11 and 12 show the particle drift data and predictions for larger particle-to-wall distances of
H = 9.0 mm and 11.0 mm. Compared to the H = 7.0 mm data, the values of particle drift are smaller and
decreased with increasing H. When the particle-to-wall distance was increased to 17.0 mm, no drift could be
measured in the plane of the particle oscillation as shown in Fig. 13. In all cases, there is good agreement between
the experimental results and the inviscid model predictions of Eq. (41), for sufficiently small values of H.

Although not systematically investigated experimentally, the fluid and particle densities have significant
influences on the vibration-induced attraction force. In the presence of air in the fluid cell instead of water,
an oscillating steel particle showed no drift in the mean position under the same vibration conditions, even
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if the particle and the wire were placed near one of the cell walls. For very small fluid densities, the attraction
force would be negligibly small as given by Eq. (36).

Eqs. (35) and (36) also predict a strong effect of particle density on the attraction force when the fluid den-
sity is kept constant. Fig. 14 shows the variations of the attraction force for a particle oscillating normal to the
nearest cell wall (Eq. 35) with the cell vibration frequency for different particle densities. For solid particles
under microgravity and without any wire attached, cell vibration due to g-jitter would cause not only an oscil-
lating motion, but also a gradual drift in the mean position towards the nearest wall. Although the attraction
force may be quite small for particles having a similar density as that of the surrounding fluid such as a protein
crystal, the vibration-induced attraction force would cause the particle to drift over a significant distance
within the fluid cell under microgravity given enough time which is typically required for protein crystal
growth.

6. Conclusion

The vibration-induced attraction force on a particle oscillating near a wall in a fluid cell has been investi-
gated experimentally and theoretically. The particle motion was investigated experimentally by suspending a
spherical steel particle by a thin wire in a fluid cell and vibrating the cell horizontally at different frequencies
and amplitudes. When the particle was oscillating in the center of the cell sufficiently far away from all the cell
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walls, the mean particle position was unaffected before, during, and after the vibration of the cell at all vibra-
tion frequencies. But when the particle suspended by a wire was oscillating near one of the cell walls, there was
a clear shift in the particle mean position towards the nearest cell wall due to the attraction force. For both
cases of particle oscillation normal to and parallel with the nearest wall, the drift in the mean particle position
increased with the cell vibration frequency and amplitude, and decreased with the distance between the par-
ticle center of mass and the nearest wall.

Theoretical models of the attraction force and its effect on the mean position of the oscillating particle were
developed assuming an inviscid fluid. Analytical expressions were derived for the attraction force and the mag-
nitude of the drift in the particle mean position for a particle suspended by a wire in a fluid cell and oscillating
near a cell wall. The model predictions were seen to be in good agreement with the experimental data obtained
for a steel particle oscillating parallel with the nearest wall in a water-filled cell under various cell vibration
conditions.
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1412.
Riley, N., 2001. Steady streaming. Ann. Rev. Fluid Mech. 33, 43–65.
Stokes, C.G., 1851. Mathematical and Physical Papers, 3, p. 1.


	Effects of vibrations on particle motion near a wall: Existence of attraction force
	Introduction
	Experimental apparatus
	Theoretical analysis of particle oscillation normal to a container wall
	Alternate analysis of particle drift near a cell wall
	Results and discussion
	Conclusion
	Acknowledgements
	References


